
112 The Open Medical Informatics Journal, 2008, 2, 112-116  

 

 1874-4311/08 2008 Bentham Open 

Open Access 

Meta-Analysis of Multi-Arm Trials Using Empirical Logistic Transform 

Hathaikan Chootrakool1 and Jian Qing Shi2,* 
 

School of Mathematics and Statistics, University of Newcastle, UK  

Abstract: Meta-analysis of multi-arm trials has been used increasingly in recent years. The aim of meta-analysis for 

multi-arm trials is to combine evidence from all possible similar studies. In this paper we propose normal approximation 

models by using empirical logistic transform to compare different treatments in multi-arm trials, allowing studies of both 

direct and indirect comparisons. Additionally, a hierarchical structure is introduced in the models to address the problem 

of heterogeneity among different studies. The proposed models are performed using the data from 31 randomized clinical 

trials (RCTs) which determine the efficacy of antiplatelet therapy in maintaining vascular patency.  
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1. INTRODUCTION  

 Most meta-analysis has focused on summarising of 
treatment effect measures based on comparisons of two 
treatments. Some meta-analysis data sets contain information 
on more than two treatments comparing evidence of multi-
arm trials comparisons. This type of data is called Multi-arm 
trials in this paper although some authors call it mixed 
treatment comparison (MTC). Higgins and Whitehead [1] 
presented a random effect meta-analysis for binary data and 
introduced an idea of ‘borrowing strength’ from indirect 
comparison. They considered using the general parameter 
approach and the exact binomial approach to estimate 
parameters of interest in a meta-analysis. Lu and Ades [2] 
proposed a Bayesian hierarchical model using the Markov 
Chain Monte Carlo to represent meta-analysis of multi-arm 
trials. Inconsistency in multi-arm trials evidence structure 
was examined by Lu and Ades [3]. They performed a 
Bayesian hierarchical model with fixed effects or random 
effects for fitting multi-arm trials under the assumption that 
the available evidence sources were consistent in estimating 
all treatment contrasts.  

 In meta-analysis for comparing two treatments, we 
usually collected all the studies providing information on 
comparing those two treatments directly. However some 
studies in multi-arm trials give a useful information on 
indirect comparison in a situation where the treatments have 
not been directly compared. Thus, there are two types of 
treatment comparisons in meta-analysis of multi-arm trials: 
one is to compare two treatments directly, the other is to use 
information from indirect comparisons. For example, from 
antiplatelet data given in Table 2, there are three groups of 
studies available: treatments A, B and C; the control group 
of the meta-analysis is treatment C, studies in group GAB 

compare treatment A versus B, studies in group GBC compare 
treatment B versus C, and studies in group GCA compare 
treatment  C versus A and our aim is to compare treatment A  
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versus B. The studies in group GBC and GCA then provide the 
indirect comparison for treatment A versus B. Later in this 
paper, we will blur the concept between direct and indirect 
comparisons since our model can actually give estimate of 
the treatment effect between any two arms of all treatments 
involved in the multi-arm trials. 

 The direct and indirect comparisons for RCTs in a meta-
analysis have been expressed by several authors [2-6]. In this 
paper we propose a normal approximation model based on 
the empirical logistic transform. There are at least two 
advantages comparing to other methods: (1) the proposed 
empirical log-odds ratio models exclude the trial effects and 
then it will give an unbiased estimate for treatment effect 
while the other methods may give a biased estimates in some 
circumstances (see for example the discussion on page 59 in 
[7]); (2) The computation is very efficient and fast. The 
method has been used for the systematic reviews of 
antiplatelet trialists’ collaboration [8] which investigates the 
efficacy of antiplatelet therapy in maintaining vascular 
patency in various categories of patients. The paper is 
organized as follows. We begin by introducing the data 
structure of multi-arm trials and performing empirical log-
odds and empirical log-odds ratio models in Section 2.1. The 
maximum likelihood method is illustrated in Section 2.2. 
The last section concludes the ideas of this paper and gives 
some comments.  

2. METHODOLOGY  

 In this section we shall propose our ideas of empirical 
log-odds and empirical log-odds ratio models through the 
antiplatelet data. Clinically, after coronary artery 
revascularisation of patients, whether by coronary artery 
bypass grafting or by percutaneous transluminal coronary 
angioplasty, angiographic studies show substantial rates of 
re-occlusion [9]. Experimental and clinical evidence suggests 
that antiplatelet therapy may help prevent vascular graft or 
arterial occlusions, particularly during the period soon after 
vascular procedures, before any intimal damage has healed 
[10, 11]. The data was analyzed in order to determine the 
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efficacy of antiplatelet therapy in maintaining vascular 
patency. There are 31 RCTs in total investigating the use of 
aspirin plus dipyridamole, or aspirin alone, in the 
comparison with the control group. The trials compare three 
treatments A (aspirin plus dipyridamole), B (aspirin only) 
and C (control group), where 6 trials (1-6) compare A, B and 
C, 4 trials (7-10) compare A and B, 13 trials (11-24) 
compare A and C and 7 trials (25-31) compare Band C. The 
data is shown in Table (2).  

2.1. Models  

 For convenience, we partition the data set into four 

groups. Let G1 = {1,…,6}, G2 = {7,…,10}, G3 = {11,…,24} 

and G4 = {25,…,31} be four sets of studies comparing 

treatment A versus B versus C, A versus B, A versus C and 

B versus C, respectively. Let riA, riB and riC be the numbers 

of patients that have reocclusions on treatments A, B and C 

respectively where the ith study is in G1  G2  G3, G1  G2 

 G4 and G1  G3  G4, respectively, where ‘ ’ stands for 

‘and’. The total numbers of patients are niA, niB and niC, 

respectively. Let iA, iB and iC be the probabilities of 

patients that have reocclusions on treatments A, B and C 

respectively in the ith study. The riA, riB and riC are thus 

binomially distributed as Bin( iA, niA), Bin( iB, niB) and 

Bin( iC, niC) respectively. Suppose that XiA, XiB and XiC are 

the empirical logistic transforms, called the empirical log-

odds for (riA, niA), (riB, niB) and (riC, niC) respectively, where 

for example the empirical logistic transform of XiA is defined 

by log(riA +0.5)/(niA  riA + 0.5) (we may also use notation ln 

(·) here) where i is in the set G1  G2  G3. From Cox and 

Snell [7, page 31], if riA is not too small or not too close to 

niA, the empirical logistic transform XiA has an approximation 

normal distribution with mean log( iA/(1  iA)). The 

variance can be estimated from the data 
   iA

2
 = (niA+1)/((riA 

+0.5)(niA  riA +0.5)). It iA is the same for XiB and XiC. The 

models on the log-odds scale for each group are defined as 

follows  
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 The above models are called empirical log-odds models. 

The 
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2
 are the variances of empirical log-

odds XiA, XiB and XiC, respectively. The iA, iB and iC are 

independent and follow the standard normal distribution and 

correspond to the random sampling errors of the models XiA, 

XiB and XiC within the ith study respectively. All random 

sampling errors are therefore independent and normally 

distributed as N(0, 
  iA

2
), N(0, 

  iB

2
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and N(0, 

  iC

2
), 

respectively. The i,AC, i,BC and i,AB are the treatment 

effects, which are defined, for example  

  
i,AC

= log iA

1
iA

log iC

1
iC

.  

 It is called log-odds ratio between treatment A and 
treatment C, measuring the effect of treatment A comparing 
to the control group C. This is the parameter of interest. The 
main purpose of the meta-analysis is to find the overall 
estimates of the log-odds ratios between treatments A versus 
C, B versus C and A versus B. We may assume a fixed effect 
or a random effect. The fixed effect model assumes that all 
the i,AC’s are the same as AC, where AC is a fixed treatment 
effect between the treatment A and the control group C for 
all studies in G1 and G3.The fixed treatment effect BC can be 
considered in the same way. It is important to note that the 
treatment effect i,AB or its fixed effect AB is not a free 
parameter since AB = AC  BC.  

 To address the problem of between-study heterogeneity, 

we usually use a random effect model, i.e. assume i,AC, i,BC 

and i,AB are random variables. If we use a normal 

distribution, the random effect model is to assume that the 

treatment effects i,AC, i,BC and i,AB are normally distributed 

as N(μAC, 
  AC

2
), N(μBC, 

  BC

2
) and N(μAC μBC,

  AB

2
), respec-

tively. For the studies involved in G1, the treatment effects 

i,AC and i,BC are defined based on the same baseline 

treatment C and therefore may be dependent. Let  be the 

correlation coefficient between the treatment effects i,AC and 

i, BC, we may define a model as 
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 The parameters μAC and μBC are the overall mean effects 

between the control group C and the treatment A, and the 

control group C and the treatment B, respectively. The 
  AC

2
 

and 
  BC

2
 measure the between-study heterogeneity of the 

treatment effects i,AC and i,BC, respectively. The correlation 

coefficient  measures the amount of linear association 

between i,AC and i,BC.In group G2, treatments A and B are 

involved. From (1), we have  
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where 
  AB

2  
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  AC

2  
+ 

  BC

2  
 2 AC BC. The entries on the 

diagonal of the covariance matrix in (1) are often called the 
heterogeneity parameters of the treatment effects in a meta-
analysis. The useful property of the model parame terisation 
is the correlation structure of the covariance matrix. An 
important special case is that the heterogeneity parameters of 
the treatment effects are assumed to be the same, i.e. AC = 

BC = AB, called homogeneity of variances. Hence the 
correlation coefficient  takes the value 1/2 because the 
treatment effects i,AC and i,BC involve the control group C 
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in the same way. A general model is to allow the 
heterogeneity parameters of the treatment effects to be 
different for each treatment effect related to the control 
group, called heterogeneity of variances.The covariance 
matrix will be in the standard form as shown in (1) and (2). 

 The i in each group is the trial effect. We can consider 

the following two assumptions. The first one is that the trial 

effects are assumed to be study-level effects, which means 

the i’s are different fixed parameters. We need to include 31 

different unknown parameters in the model. The second one 

is that we may assume a model for i’s. A special case is to 

assume that all trial effects are the same:  = 1 = 2 = … = 

31. Conversely if the trial effect is assumed to be a random 

effect, we may assume that i  N(μ 0, 
 

2
) where μ  is the 

overall mean of the trial effects and  measures the 

magnitude of the variation between the studies. The standard 

random effect model used in meta-analysis was described by 

[12]. To capture skewness and heavy tails in the distribution 

of the trial effect, we may use a mixture of normal 

distributions [13]. However, in practice the trial effects in 

most meta-analysis would not satisfy any model since 

different experiment designs and different data analysis 

models are used in different studies. Most of the existed 

methods therefore used the first assumption. Note that the 

number of unknown parameters is the same as the number of 

studies. This will result in some theoretical and 

computational problems. The accuracy of the estimation 

depends on the sample size of each study not the overall 

sample size of the pool in the meta-analysis. The estimates 

of some parameters may not be consistent. Due to the large 

number of parameters, the computation is usually unstable. 

We therefore propose the following empirical log-odds ratio 

model. Based on the empirical log-odds models, a model on 

the log-odds ratio scale is suggested here. Let Yi, AC = XiA  

XiC, Yi, BC = XiB  XiC and Yi, AB = XiA  XiB, which are called as 

the empirical log-odds ratio for XiA versus XiC, XiB versus XiC, 

and XiA versus XiB, respectively. The models on the log-odds 

ratio scale in each group can be defined as follows 
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 The above models are called empirical log-odds ratio 

models. The trial effect i’s are no longer in the above 

models. Note that the models Yi,AC and Yi,BC for the studies in 

G1 are not independent. The treatment effects i,AC and i,BC 

are jointly normally distributed as shown in (1). The 
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 The μAC and μBC are the overall mean effects for the 

models Yi,AC and Yi,BC. The variances of the models Yi,AC and 

Yi,BC are 
  AC

2
 + 
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 and 
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 + 
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 respectively. The 

covariance between both models is AC BC + 
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Additionally the empirical log-odds ratio models for G2, G3 

and G4 are normally distributed as N(μAC  μBC, 
  AB

2
), N(μAC, 

  AC

2
) and N(μBC, 

  BC

2
), respectively.  

2.2. Estimation  

 To make inference, the maximum likelihood method is 

applied to estimate the unknown parameters in the empirical 

log-odds ratio models given in (3)-(6). Our aim is to estimate 

the unknown parameters for the meta-analysis consisting of 

31 studies. Let  be the collection of all unknown parameters 

for the meta-analysis. Suppose that  can take any value 

within admissible ranges . The method of maximum 

Table 1. Results for the Empirical Log-odds Ratio Models  

 

AB AC BC 
Model 

μAB AB μAC AC μBC BC 

Model 1 0.108146 0.275320 -0.568930 0.275320 -0.677076 0.275320 

(SD) (0.156391) (0.136747) (0.161554) (0.136747) (0.150660) (0.136747) 

OR scale 1.142110 1.316952 0.566130 1.316952 0.508100 1.316952 

Model 2 0.064521 0.09338 -0.599244 0.333440 -0.663766 0.318274 

(SD) (0.053287) (0.065361) (0.171172) (0.228035) (0.187616) (0.204939) 

OR scale 1.066648 1.097879 0.549226 1.395761 0.5149085 1.37475 

Model 3 0.062605 0.00000009 -0.590714 0.335648 -0.653320 0.212374 

(SD) (0.252691) (0.324800) (0.262792) (0.502075) (0.241205) (0.218013) 

OR scale 1.064607 1.0 0.553931 1.398847 0.520315 1.23661 
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likelihood is to find the value  
ˆ within  which makes the 

likelihood function of  as large as possible. The log-

likelihood function for the empirical log-odds models can be 

written as  
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 Notice that the l( ) is a summation of log-likelihoods 

from G1 to G4.The p(Yi,AC, Yi,BC | i), p(Yi,AB| i), p(Yi,AC | i) 

and p(Yi,BC | i) represent the joint probabilities or likelihoods 

of observing the data that has been collected in G1, G2, G3 

and G4 respectively. Maximizing the log-likelihood function, 

we use the function nlme in the software R to solve the 

unknown parameters. As described in the previous section, 

there are two assumptions of heterogeneity parameters: 

homogeneity and heterogeneity variances. For the model 

with homogeneity variances (Model 1 in Table 1), we 

assume that AC = BC = AB and the correlation coefficient 

between the treatment effects takes 1/2. For the model with 

heterogeneity variances (Model 2 in Table 1), the correlation 

coefficient is an unknown parameters. Thus, the  in Model 

1 is {μAC, μBC, 
2
}

 
while  in Model 2 is { μAC, μBC, 

  AC

2 ,
BC

2 . }and 
  AB

2  
is given in (2).  

2.3. Numerical Results  

 The estimates of unknown parameters in Model 1 and 
Model 2 are shown in (Table 1). From Model 1, the overall 
means of treatment effects A versus B, A versus C and B 
versus C are 0.108146, -0.568930 and -0.677076 
respectively and the variation between studies in those 
comparisons are assumed the same, 0.275320. The overall 

Table 2. Randomized Trials of Aspirin Data  

 

Study Number 
Aspirin + Dipyridamole  (A) 

event/total 

Aspirin (B)  

event/total 

Control (C)  

event/total 

1 15/49 10/47 18/51 

2 35/162 37/155 47/153 

3 83/368 85/373 114/371 

4 23/100 16/100 39/100 

5 6/16 2/16 12/17 

6 0/100 6/100 12/100 

7 20/60 22/64  

8 26/313 27/317  

9 10/41 6/40  

10 8/55 15/55  

11 33/160  37/160 

12 37/202  81/205 

13 4/18  9/30 

14 17/62  20/63 

15 8/61  24/64 

16 13/47  27/46 

17 21/34  14/35 

18 11/72  15/68 

19 6/187  13/189 

20 86/286  86/263 

21 4/33  15/32 

22 15/50  12/50 

23 7/22  19/31 

24 15/132  13/67 

25  15/71 16/71 

26  6/29 15/31 

27  7/68 17/69 

28  24/215 47/213 

29  19/148 28/150 

30  6/19 18/25 

31  2/47 11/45 
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means estimated from Model 2 are quite similar. Those 
means for Model 2 are 0.064521, -0.599244 and -0.663766, 
and the variation between studies are 0.09338, 0.33440 and 
0.318274 respectively. The correlation coefficient in Model 
2 is 0.96. Notice that the estimator of  is quite close to one 
and AB is very small. All treatment effects are on the log-
odds ratio scale. In term of interpretation, we consider the 
overall means on the odds ratio (OR) scale. The results 
obtained from both models are quite close. They indicate that 
both treatment A and treatment B reduce the rates of 
reocclusion significantly by about 40% comparing to control 
group. However, the difference between treatment A and 
treatment B is neglect although treatment B is even slightly 
better than treatment A (improve by about 14% using Model 
1 and 6% using Model 2). In both models, we used empirical 
log-odds ratio models to eliminate the nuisance parameters 
(trial effects). The computation is very efficient and very 
stable, it converges very fast for almost any starting points.  

3. CONCLUSION  

 We demonstrated a normal approximation model based 
on empirical logistic transform to multi-arm trials data. The 
approximation is usually quite good if the number of 
observations in each study is not too small (the number of 
samples in a single study should usually be larger than 20). 
Since the normal distribution is used, the calculation from 
the normal approximation is much faster than from the 
model with exact binomial distributions. It takes just about 2 
seconds using Model 1 for the example discussed in this 
paper, but it takes about 30 minutes if we use the exact 
binomial distributions and conditional likelihood approach 
(it takes about 5 minutes if an unconditional likelihood 
approach is used, but this method needs to estimate s’s). 
The final results from both models are very close.  

 The estimation of  is quite trick. In our example, the 

information for  or AB mainly comes from G2.Due to small 

number of studies involved in G2, we should be careful to 

explain the values of the estimates, which  is quite close to 

1 and  is quite close to zero. In this case, a way is to assume 

the between-study heterogeneity 
  AB

2
 of indirect comparison 

was not relatively estimated from the between-study 

heterogeneities 
  

AC

2
or

BC

2( )  of the direct comparison. This 

is the Model 3 given in Table 1, which AB is an independent 

unknown parameter and  is assumed as 1/2. The results 

from Models 2 and 3 are almost the same. Several authors 

[4, 6] pointed out in the same way. Whenever there is no or 

insufficient evidence on direct comparison from RCTs, the 

indirect comparison may provide useful or supplementary 

information on the treatment effect. However the validity of 

the indirect comparisons depends on the internal validity and 

similarity of the included studies (see [6]). If the trial effects 

in the empirical log-odds model are assumed to be study-

level fixed effects, the estimation is not simple as many 

parameters are involved in the model. This leaded to a 

problem of inconsistent estimate. Solving the problem of the 

trial effect, the empirical log-odds ratio model was suggested 

in order to eliminate the trial effect from the model. Some 

other methods can also be used to address the problem, for 

example, a conditional approach based on the binomial 

distribution. We will not discuss the details here.  

 ATC(II) Collaboration [8] concluded that antiplatelet 
therapy (aspirin plus dipyridamole (A) or aspirin alone (B)) 
produced a highly significant (2p  0.00001) reduction in 
vascular occlusion in a wide range of patients. The odds of 
vascular graft or arterial occlusion were reduced by about 
40% while treatment continued. Our numerical results in the 
previous section are similar to the conclusion from [8].  
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