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Abstract: The aim of this study was to investigate whether artificial intelligence methods can represent objective methods 

that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive 

value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often 

misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take 

prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated 

patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a na-

ive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, 

and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. 

The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic 

methods. 
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1. INTRODUCTION 

 This study aims to investigate whether artificial intelli-
gence methods can represent objective methods in syndrome 
diagnosis. Such methods are essential because most syn-
dromes lack a criterion standard of diagnosis, and because 
clinicians often misjudge the effect that prior probabilities 
have on the predictive value of diagnostic handles, such as 
clinical signs. 

 When a child is born with malformations, it is devastat-
ing for the parents. To quickly find a diagnosis is important 
for possible treatment, prognosis, and for the parents’ need 
to know. 

 The child’s malformations may represent a syndrome. 
But syndrome diagnosis is beset with difficulties, e.g. the 
lack of an external validation of the diagnosis for most syn-
dromes. 

 We argue that objective methods are essential in syn-
drome diagnosis, and, indeed, necessary in all forms of clini-
cal diagnosis. 

 We show that simple artificial intelligence (AI) methods 
may be such objective methods, capable of establishing di-
agnostic criteria in syndrome diagnosis. 

1.1. Syndromes: No Criterion Standard of Diagnosis 

 In this article the word ‘syndrome’ means ‘congenital 
malformation syndrome’. (For example Table 6 in the results 
section gives examples of syndromes and the associated 
clinical signs or features). A syndrome is a clinical delinea-
tion based on the presence of a set of clinical signs. The  
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standard method in clinical syndrome diagnosis is the ‘pat-
tern recognition’ method where the clinician looks for the 
clinical signs that make up a certain syndrome. 

 For most syndromes, there is no ‘gold standard’ or ‘crite-
rion standard’ of diagnosis. There may thus be no biochemi-
cal, radiological, DNA diagnostic or chromosomal investiga-
tion to verify the diagnosis. The accuracy (validity, ‘correct-
ness’) of the diagnosis may for many syndromes have to be 
relinquished because of this lack of a criterion standard of 
diagnosis. Still, the sine qua non of scientific method - con-

sistency - remains a fundamental goal. 

1.2. The Effect of Prior Probability on Predictive Value 
Confuses the Issue 

 The predictive value of clinical signs is strongly depend-
ent on how common the syndrome is, the ‘prior probability’. 
Tables 1, 2 and 3 show the striking effect of the prior prob-
ability on a clinical sign’s worth as a diagnostic measure. 
Clinicians do not always estimate the prior probability of a 
disease correctly [1-3] -- the standard prevalence figures do 
not necessarily apply in a differential diagnostic situation. 
This often leads to confusion about the diagnostic value of a 
particular diagnostic sign. 

Table 1. Clinical Indices 

 

 Syndrome Present Syndrome Not Present 

Positive test  TP  a b  FP 

Negative test  FN  c d  TN 

TP, true positives, FN, false negatives, FP, false positives, TN, true negatives. In the 

context of this article, positive test means clinical sign present, and negative test means 

clinical sign not present. Sensitivity is a/a+c, the probability of having the clinical sign, 
given that you have the disease, specificity is d/ b+d, the probability of not having the 

clinical sign, given that you do not have the disease. Predictive value is a/ a+b, the 
probability of having the disease, given that you have the clinical sign. 
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Table 2. Predicitive Value, High Prevalence 

 

 
Syndrome  

Present 

Syndrome  

Not Present 
 

Positive test  95  10  

Negative test  5  90  

  100  100  200 

Sensitivity 0.95, specificity 0.90, prevalence 0.50. Positive predictive value 95/ 95 + 10 

= 0.90, i.e. the probability that the patient has the syndrome if this sign is present, is 
ninety per cent. 

 

Table 3. Predictive Value, Low Prevalence 

 

 
Syndrome  

Present 

Syndrome  

Not Present 
 

Positive test  95  990  

Negative test  5  8910  

  100  9900  10000 

Sensitivity 0.95, specificity 0.90, prevalence 0.01. Positive predictive value 95/ 95 + 

9900 = 0.087, i.e. the probability that the patient has the syndrome if this sign is pre-
sent, is still less than nine per cent. 

 

1.3. The Philosophical-Scientific Issue 

 The lack of objective methods has a philosophical-
scientific, and a practical aspect. 

 The question may seem a problem of marginal impor-
tance, of interest to those involved in the mathematical side 
of medicine. On the contrary, it is a major, though not much 
recognised problem. Objective methods are necessary in the 
reductionist philosophy of science that medicine claims to be 
a part of. The question is at the foundation of medicine as a 
scientific discipline. If diagnoses cannot be validated against 
a criterion standard, and are not even consistent, it is not 
possible to consider medicine a scientific discipline. 

 It could be argued that the problem of ‘no criterion stan-
dard’ of diagnosis extends to virtually all areas of medicine. 
Both clinical diagnosis and laboratory diagnosis may vary 
from one medical practitioner to another. Even for diseases 
such as diabetes, hypertension or peptic ulcer, doctors may 
differ in what the definition of the disease is. Although pro-
fessional bodies establish diagnostic criteria, these may not 
be congruent with what an individual doctor uses. For clini-
cal diagnoses there may be no agreed-upon diagnostic crite-
ria. Since a diagnosis links to information about prognosis 
and treatment, vague diagnostic criteria may be harmful both 
in medical practice and in medicine as science. 

1.4. The Consequences of Diagnostic Errors 

 A false positive diagnosis may lead to the patient receiv-
ing unnecessary and potentially harmful treatment. It may 
mean fear and worry for the patient and her or his relatives. 

 A false negative diagnosis may mean the patient will 
forgo life-saving or disease modifying treatment, or impor-
tant educational measures. 

 Depending on the situation, both false positive and false 
negative diagnoses may lead to further unnecessary, poten-
tially harmful, and costly investigations. 

1.5. Objective Methods are Needed to Establish Diagnos-
tic Criteria 

 It is obviously important to avoid the diagnostic errors 
and their consequences. The prevalent intuitive pattern rec-
ognition approach to syndrome diagnosis is open to misdiag-
noses. Objective methods can act as a corrective to the intui-
tive approach and help remedy some of its shortcomings. 

 We approach this by trying to establish diagnostic criteria 
to be used by clinicians. 

1.6. Objective Methods: Mathematical--Statistical Ap-
proaches 

 Mathematical-statistical methods might represent meth-
ods that could establish diagnostic criteria. But there are 
problems with using statistical methods, primarily because 
basic assumptions often are not met. A number of statistical 
classification methods have been applied to syndromology, 
such as factor analysis/ principal component analysis [4,5], 
discriminant analysis [6-10], log-linear analysis [11], latent 
class analysis [12], and cluster analysis [13,14]. 

 Most multivariate statistical methods are parametric, and 
require multinomial normal distributions of the variables, as 
well as continuous variable values. These basic assumptions 
can rarely be met. Missing values for one or more variables 
is often an additional problem. 

1.7. Objective Methods: Sophisticated AI Methods 

 Several artificial intelligence and informatics methods 
could be used to tease out the clinical signs with the highest 
predictive value in syndrome diagnosis. Neural nets, support 
vector machines, and non-negative matrix factorization 
[15,16] are examples of such methods. 

 Case based reasoning [17,18] and the ID3 algorithm [19] 
have previously been tried as alternatives to statistical meth-
ods. 

 Problems with the more sophisticated AI methods are 
that they may seem so complex and unfamiliar as to alienate 
clinicians who would be the ones to use the results of the 
analyses. Especially with small data sets there is also the 
problem of using too much sample specific information and 
not getting generalizable results, i.e. overfitting. 

1.8. Objective Methods: Our Approach 

 We hold that some fundamental artificial intelligence 
techniques can successfully be applied to the problem of 
establishing diagnostic criteria. 

 We introduce a feature vector method, a set method, and 
also apply other artificial intelligence methods. 

 The techniques we propose are variants of known meth-
ods rather than basically new. What we argue is that the 
situation in syndrome diagnosis warrants objective methods, 
i.e. these methods are a necessity, and the methods we pro-
pose represent a possible practical solution. The application  
 

 



Syndrome Diagnosis: Human Intuition or Machine Intelligence? The Open Medical Informatics Journal, 2008, Volume 2    151 

of these methods to syndrome diagnosis is new, and, in our 
opinion, an example of a type of approach that is necessary. 

1.9. Conclusion 

 In syndrome diagnosis there is often no criterion standard 
of diagnosis. 

 In syndrome diagnosis as in medical diagnosis in general 
there is a need to be alert to the strong effect of prior prob-
ability on the predictive value of diagnostic indicators, such 
as clinical signs. Objective methods can help counteract the 
misdiagnoses that can be caused by neglecting this. The hu-
man intuitive approach is not very good at estimating and 
taking into account the probabilities involved. 

 Objective methods are warranted as a corrective to the 
intuitive approach to syndrome diagnosis. 

 Using mathematical-statistical approaches entails prob-
lems with the basic assumptions of these methods. 

 Using the more sophisticated AI methods may also vio-
late basic assumptions. The complexity of these methods 
may alienate clinicians. 

 We apply two simple informatics/ artificial intelligence 
methods to see whether these methods can help establish 
diagnostic criteria for syndromes. 

2. MATERIAL AND METHODOLOGY 

 We created a database of machine-generated patients. 

 We applied ‘the vector method’ and the set method as 
well as one artificial intelligence reference method - the ID3 
-, and two mathematical reference methods -- cluster analysis 
and the naive Bayes -- to this patient series. 

 The Birth Defects Encyclopedia (BDE) [20] -- a classical 
catalogue of clinical syndromes -- lists the occurrence 
(prevalence or incidence) of syndromes along with the clini-
cal signs found in the syndrome. It also lists the frequency of 
these clinical signs in each syndrome. 

 In this study, we included syndromes with a listed occur-
rence of one per fifty thousand or more. Some conditions 
were excluded, such as isolated neural tube defect, as well as 
several groups of syndromes, for example the arthrogry-
poses. 

 We generated ‘artificial patients’ based on the BDE. 

 The data from the BDE was transformed into artificial 
patients in the following manner: For each syndrome the 
figure for occurrence, e.g. 1/ 20 000, was multiplied by a 
common arbitrary figure, e.g. 100 000. This gave the number 
of artificial patients, in this case five artificial patients. For 
each artificial patient, the algorithm had to decide whether 
each clinical sign was to be present or not. For this, it used 
the listed frequency of the clinical sign for this syndrome. 
For each sign, a random number between zero and one was 
generated. If the random number was smaller than the listed 
frequency of the sign, it was decided that this sign would be 
present in this particular artificial patient. If the random 
number was larger than the listed frequency of the sign, it 
was decided that this sign would not be present in this artifi-
cial patient. 

 Each artificial patient therefore consisted of a syndrome 
name and a list of signs present (‘1’) or not present (‘0’). 

 We generated six thousand artificial patients. This gave a 
reasonable number of patients even for the least common 
syndromes. 

 The list of artificial patients had the syndromes in ‘true 
proportion’ to their occurrence as given in the BDE. The 
clinical signs had the same overall frequency as listed in the 
BDE. Any non-random co-existence of clinical signs was 
lost by the randomization process. 

2.1. The ‘Vector Method’ 

 The vector method algorithm starts with a set of patients 
with known diagnoses on the one hand and a patient to be 
diagnosed on the other hand. 

 In our context, the database of patients with known diag-
noses was the artificially generated patients. 

 When presented with a new case - the patient to be diag-
nosed - the main procedure of the vector method algorithm 
compared the new case to all existing cases. For each indi-
vidual case in the database, it calculated the ‘distance’ be-
tween the patient to be diagnosed and the database case. The 
algorithm assigned a new case to the syndrome diagnosis 
where the ‘distance’ was smallest. 

 Basically, the ‘distance’ is the number of clinical signs 
that two patients do not have in common, i.e. those signs that 
either of the patients has and the other does not have. 

 The algorithm calculated this distance by finding the ‘ex-
clusive or’ for a pair of patients, i.e., the signs present in one 
syndrome patient but not the other. 

 This represents the difference or the dissimilarity or the 
distance between the two cases. 

2.1.1. Ties 

 In some instances, two cases or more in the database had 
equally small distances to the case that was to be diagnosed. 
In this situation, the new case was assigned the diagnosis of 
the database case belonging to the most prevalent of the syn-
dromes with the same distance. 

2.2. The Set Method 

 The vector method algorithm would diagnose a new pa-
tient, but did not give information about which signs were 
used in diagnosis. 

 To present such a list of clinical signs, we applied a set 
method to the database of artificial patients as well. 

 The approach of the set method is similar to the one used 
by the vector method algorithm, but with the set method 
there were no individual patients to be diagnosed. The set 
method finds a list of clinical signs common to each syn-
drome group - a ‘feature vector’. 

 The algorithm first found the intersection of the lists of 
clinical signs for all pairs of patients for a given diagnostic 
group. We thus got all sets of features common to at least 
two patients. The algorithm then proceeded by intersecting 
all pairs of these sets again, producing sets of clinical signs  
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common to at least four patients, and so on. We repeated this 
cycle until no more feature sets were produced. In this way, 
we found the most common sets of features for each syn-
drome. 

 However, the most common set of features may not be 
the most predictive. The clinical signs that are common in 
one syndrome, may be common in another syndrome as 
well. This set of features then cannot be used to distinguish 
between diagnostic groups. 

 We therefore searched for prototypes - feature vectors 
which were common to a large number of the patients in a 
given diagnostic group, but which differed from common 
feature vectors of other diagnostic groups. The algorithm 
also identified subclasses within diagnostic groups. If a large 
subclass existed within a syndrome, the algorithm rendered 
the feature vector for that subclass. 

2.2.1 Computer and Programming Language 

 We used the Lisp programming language. The programs 
were run on a PC with the Linux operating system. 

2.3. The Reference Methods 

 As a reference for basic artificial intelligence methods, 
we used the ID3 algorithm, cluster analysis, as well as a ‘na-
ive Bayes’ ‘calculation’. 

2.3.1. The ID3 Identification Tree Method 

 The ID3 starts by dividing the patients into two sub-
groups, where each subgroup is as homogeneous as possible. 
Homogeneous in our context means that the patients have 
the same clinical signs. After the first division into sub-
groups, each subgroup is subdivided into two new sub-
groups, and so on. This procedure builds a tree, where the 
original group is the root/ trunk, subgroups are branches, 
subsubgroups are twigs, and the basic unit of analysis is a 
leaf. The basic unit of analysis is e.g. an individual patient or 
a syndrome. The signs used to discriminate between groups, 
are the branching points in the tree. 

 To decide how homogeneous a group is, the ID3 algo-
rithm uses an information theory formula: 

 

where nb is the number of instances in branch b, nt is the 
total number of instances in the whole tree, and nbc is the 
total of instances in branch b of type c. In our context, ‘type 
c’ stands for ‘syndrome patients who have a certain clinical 
sign’. At each branching point in the tree, the remaining syn-
drome patients are divided into two groups, those who have 
the clinical sign and those who do not have the clinical sign. 

2.3.2. Cluster Analysis 

 With the cluster analysis runs, we used the same data sets 
as we used for the runs using the basic artificial intelligence 
methods. 

 We ran cluster analyses using average linkage between 
groups, and nearest neighbour as the clustering method. 
Since our data were binary, we used a binary measure of 
similarity (‘Sokal and Sneath 5’, the squared geometric mean 

of conditional probabilities of positive and negative 
matches). Clinical signs were used as the basic unit of analy-
sis. 

2.3.3. ‘Naive Bayes’ Calculations 

 Theoretically, the optimal way of finding which clinical 
signs have the largest predictive value, is using a calculation 
based on Bayes’ formula. This formula takes into account 
the sensitivity as well as the specificity of the clinical sign, 
and the prior probability of the syndrome. 

 There are two problems with using ‘Bayes’ formula. 
First, it assumes that clinical signs are independent. This 
does not always hold true. ‘Upward slanting palpebral fis-
sures’ as a sign clearly is not independent mathematically 
from ‘downward slanting palpebral fissures’. ‘Low set ears’ 
and ‘upward slanting palpebral fissures’ probably occur to-
gether more often than expected by chance, etc. 

 Secondly, the figures that go into Bayes’ formula are 
often not readily available. 

2.4. Runs Using Artificial Intelligence Methods 

 In these runs, the results presented for the vector method 
algorithm, the set method, the ID3 and the ‘naive Bayes’ ‘ 
are all averages of ten runs with six thousand artificial pa-
tients in each run. The vector method algorithm was directly 
applied to ten consecutive batches of six thousand patients, 
i.e. with no training phase. The ID3 and set methods were 
first trained on a set of six thousand patients, and then tested 
with the ten batches of six thousand patients each. Each 
batch of six thousand patients for the test runs was new, in 
that it was generated anew. However, the batches were all 
made using the same procedure for generating patients. 

3. RESULTS 

3.1. General Observations 

3.1.1. Feasibility of the Artificial Intelligence Approach 

 The vector method had a low diagnostic error rate. This 
holds true for the global error rate, as well as for the error 
rates of the individual syndromes. The set method attained a 
high predictive value for most of the sets of clinical signs. 

 These basic artificial intelligence methods were easy to 
implement, rapid, and showed consistent results in repeated 
runs. 

3.1.2. Correspondence Between Artificial Intelligence 

Methods and Reference Methods 

 There was a good correspondence between comparable 
methods. 

 The set method on the one hand, and the cluster analysis 
using clinical signs as the basic unit on the other hand, gave 
signs or groups of signs that match. 

3.2. The Artificial Intelligence Methods 

3.2.1. The Vector Method Algorithm 

 With the vector method algorithm, there was no learning 
phase. This algorithm directly diagnosed the patients. 

 As seen in Table 4, the predictive values were high, with 
the lowest being 94.9 for fragile X syndrome. Fragile X syn-
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drome does not have many distinguishing features in the 
newborn period. 

Table 4. Vector Method/ Nearest Neighbour Run 

 

Syndrome  

Name 

No of  

Cases 
Sensitivity Specificity 

Predictive  

Value 

FAS 3597 99.9 99.5 99.7 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 99.4 99.7 94.9 

Noonan 299 99.7 100.0 99.7 

Congenital CMV 221 94.6 99.8 95.4 

Trisomy 18 208 99.0 99.8 95.8 

Turner 123 94.3 100.0 98.3 

Trisomy 13 93 90.3 100.0 98.8 

deLange 81 97.5 100.0 100.0 

Williams 66 97.0 100.0 98.5 

Beckwith 56 96.4 100.0 100.0 

Prader-Willi 55 100.0 100.0 98.2 

Meckel 38 94.7 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 86.7 100.0 100.0 

Klippel-Feil 23 95.7 100.0 100.0 

SLOS 23 69.6 100.0 100.0 

FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Average of ten 
runs of 6000 artificial patients in each run. On average correctly diagnosed 5944, 

global error rate 0.93%.  

 

 The global error rate is satisfactory. However, quite low 
sensitivities were observed for some syndromes, with Smith-
Lemli-Opitz syndrome (SLOS) at a low of 69.6%. 

 The vector method did not produce any output other than 
diagnoses. Thus, the algorithm did not have to make any 
concessions for the sake of readability. The algorithm could 
therefore use all available information without doing any 
pruning. (‘Pruning’ here means removing twigs on an ID3 
tree, or parts of other search results which do not cover many 
cases, but which contribute to making it more complex). The 
nearest neighbour algorithm attained very high specificities, 
at one hundred per cent, or close to a hundred per cent. 

3.2.2. The Set Method 

 The set method table (Table 6) lists the sets of signs 
found by the set method, along with their clinical indices. It 
should be stressed that these are sets of signs, i.e. either the 
full set listed is present, or it is not. This theoretically should 
have the effect of lowering sensitivity and increasing speci-
ficity. The impression from the tables is definitely that the 
specificity is higher than is usual, in many instances 100%. 

 Yet, the sensitivity does not seem to be dramatically low-
ered, though e.g. Smith-Lemli-Opitz syndrome (SLOS) with 
the set method is down to a 15% sensitivity. Although the 
predictive value is very good, this particular set will there-
fore not be a very useful set of signs in diagnosis. 

Table 5. ID3run 

 

Syndrome  

Name 

No of  

Cases 
Sensitivity Specificity 

Predictive  

Value 

FAS 3597 99.7 99.5 99.7 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 93.2 98.9 98.2 

Noonan 299 100.0 100.0 100.0 

Congenital CMV 221 94.6 99.7 98.3 

Trisomy 18 208 100.0 100.0 99.5 

Turner 123 94.3 99.8 90.6 

Trisomy 13 93 98.9 100.0 100.0 

deLange 81 100.0 100.0 100.0 

Williams 66 97.0 99.8 87.7 

Beckwith 56 100.0 100.0 100.0 

Prader-Willi 55 100.0 100.0 100.0 

Meckel 38 100.0 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 100.0 100.0 100.0 

Klippel-Feil 23 95.7 99.9 88.0 

SLOS 23 100.0 100.0 100.0 

FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. 

Average of ten runs of 6000 artificial patients in each run. On average correctly diag-

nosed 5942, global error rate 0.97%.  

 

 The lists of signs found by the set method have been 
pruned to make them more accessible to a human reader. We 
have tried to strike a balance between two concerns. The lists 
of clinical signs that we present are few per syndrome, and 
fairly short, in some instances the list of signs is just one 
single clinical sign. The sensitivity and specificity are still in 
general quite acceptable. The signs found make sense from a 
clinical point of view. The most cumbersome diagnoses are 
trisomy 13 and Zellweger syndrome. In trisomy 13 four lists 
of three clinical signs each are presented. In Zellweger syn-
drome, the longest list has four clinical signs that have to be 
present simultaneously. 

 On the other hand, ten of the seventeen syndromes have 
fairly predictive lists of only one sign. 

 The clinical sign ‘short palpebral fissures’ has a predic-
tive value of one hundred per cent. It has a sensitivity of 
89%, so this is a useful clinical sign. 

3.3. The Reference Methods 

3.3.1. The ID3 

 As seen in Table 5, the global error rate is low for the 
ID3 run, at about the same level as the vector method. 

3.3.2. Cluster Analysis 

 Table 7 shows a dendrogram, after a cluster analysis has 
been run, where the clinical signs were used as the basic 
measure of analysis. 
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Table 6. Sets of Clinical Signs Versus Syndromes, ‘Set Method’ Results 

 

Syndrome Name 

Set of clinical signs 
Sensitivity Specificity Predictive Value 

FAS 

Short palpebral fissures 

Midface hypoplasia 

0.89 

0.79 

 

1.0 

0.98 

 

1.0 

0.98 

Trisomy 21 

Flat occiput 

Upward slanting palpebral fissures 

Flat face 

0.77 

0.79 

0.90 

 

1.0 

0.99 

0.99 

 

1.0 

0.97 

0.93 

Fragile X 

Large ears  0.88 

 

0.98 

 

0.76 

Noonan 

Down slanting palpebral fissures 

Hypertelorism Low set ears 

0.96 

0.87 

 

0.99 

0.98 

 

0.87 

0.74 

Congenital CMV 

Hepatosplenomegaly 0.89 

 

0.99 

 

0.71 

Trisomy 18 

Large ears Cryptorchidism 

Prominent calcaneus Cryptorchidism 

Polydactyly Cryptorchidism 

Polydactyly 

0.32 

0.65 

0.86 

0.86 

 

0.99 

0.99 

0.99 

0.98 

 

0.78 

0.78 

0.71 

0.65 

Turner 

Oedema of hands and feet 

Micrognathia Low hair line 

0.38 

0.61 

 

1.0 

0.99 

 

1.0 

0.70 

Trisomy 13 

Hypertelorism Polydactyly Cryptorchidism 

Polydactyly Microcephaly Cryptorchidism 

Hypertelorism Microcephaly Cryptorchidism 

Hypertelorism Simian crease Cryptorchidism 

 

0.69 

0.59 

0.56 

0.66 

 

1.0 

1.0 

1.0 

0.99 

 

1.0 

1.0 

1.0 

0.95 

deLange 

Synophrys 

Long eyelashes 

Long philtrum Clinodactyly 

 

0.82 

0.76 

0.58 

 

1.0 

1.0 

1.0 

 

1.0 

1.0 

1.0 

Williams 

Broad nasal tip 

Broad nasal bridge Long philtrum 

Broad nasal bridge 

 

0.74 

0.61 

0.59 

 

1.0 

1.0 

0.82 

 

1.0 

1.0 

0.99 

Beckwith 

Macroglossia Midface hypoplasia 

Macroglossia Cryptorchidism 

Macroglossia Hepatosplenomegaly 

 

0.84 

0.79 

0.73 

 

1.0 

1.0 

1.0 

 

1.0 

1.0 

1.0 

Prader-Willi 

Flat face Cryptorchidism 

Hypogenitalism 

 

0.69 

0.97 

 

1.0 

0.99 

 

1.0 

0.92 

Meckel 

Polydactyly Hepatosplenomegaly Stillbirth 

Occipital encephalocoele Stillbirth 

 

0.86 

0.86 

 

1.0 

1.0 

 

1.0 

1.0 

Cri du chat (5p-) 

Cat like cry 

 

1.0 

 

1.0 

 

1.0 

Zellweger 

Hepatosplenomegaly Hypotonia 

Low BW Hypotonia Upward slant palp fissures 

Micrognathia Low BW Hypotonia Cryptorchidism 

 

0.80 

0.5 

0.25 

 

1.0 

0.99 

0.99 

 

1.0 

0.83 

0.73 

Klippel-Feil 

Short neck Low hairline Microcephaly 

 

0.29 

 

1.0 

 

1.0 

SLOS 

Polydactyly Microcephaly Micrognathia Low BW 

 

0.15 

 

1.0 

 

1.0 

FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Low BW, low birth weight, Upward slant palp fissures, upward slanting palpebral fissures. 
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 The triad of long eyelashes, synophrys and hirsutism is 
characteristic of Cornelia de Lange syndrome. Hepatosple-
nomegaly and omphalocoele are less distinctive, but point to 
Beckwith-Wiedeman syndrome. The hepatosplenomegaly 
alone also fits with Zellweger syndrome or congenital cy-
tomegalovirus infection (CMV). Though not syndrome spe-

cific, this sign could be seen as pointing to this group of syn-
dromes. ‘Cat like cry’ and round face are hallmarks of ‘Cri 
du chat’ or monosomy of the short arm of chromosome five. 
Williams syndrome is characterized by broad nasal tip/ broad 
nasal bridge. The single sign occipital encephalocoele is a 
strong pointer to Meckel syndrome. 

Table 7. Dendrogram from a Hierarchical Cluster Analysis Using Single Linkage, Showing the Relationship Between Clinical 

Signs 

 

 

Distance along the axis is a relative measure of dissimilarity. Occipital enceph, occipital encephalocoele, Downslanting palp, downslanting palpebral fissures, Prominent calc, promi-
nent calcaneus, Upward slant palp, upward slanting palpebral fissures, Short palp fiss, short palpebral fissures.  



156    The Open Medical Informatics Journal, 2008, Volume 2 Braaten and Friestad 

 Three syndromes have several similarities as far as clini-
cal signs are concerned: Noonan syndrome, Turner syn-
drome and Klippel-Feil syndrome. The next group of clinical 
signs, hypertelorism, downward slanting palpebral fissures, 
short neck, and low hairline fit these syndromes. It can be 
seen from the arbitrary scale of the dendrogram that hypere-
lorism and downward slanting palpebral fissures are closely 
related, and in comparison stand apart from short neck and 
low hairline. This may distinguish Noonan syndrome from 
Turner syndrome and Klippel-Feil syndrome. Turner syn-
drome patients when newborn also have edema of hands and 
feet, found as a single clinical sign at line nine from the bot-
tom of the dendrogram. 

 A large group of clinical signs, from polydactyly to sim-
ian crease, denote the trisomies (trisomy 21, 18 and 13). The 
first and smallest subgroup of this group fits trisomy 13 and 
18, with the signs polydactyly, prominent calcaneus, cryp-
torchidism and micrognathia. The second, larger subgroup of 
clinical signs here is consistent with trisomy 21 (Down syn-
drome). 

 Because of the relatively high prevalence of the tri-
somies, some clinical signs seem to have been ‘stolen’ from 
the less prevalent syndromes. An example of this is the 
Prader-Willi syndrome (hypotonia, cryptorchidism). 

 No individual syndrome springs to mind for hypogenital-
ism as a single sign. In this context, however, hypogenital-
ism would strongly suggest Prader-Willi syndrome. Simi-
larly, large ears strongly indicate Fragile X/ Martin-Bell 
syndrome. 

 Short palpebral fissures, long philtrum, and midface hy-
poplasia define fetal alcohol syndrome. 

 This leaves the signs microphtalmia, low birth weight 
and microcephaly as signs with no associated syndrome. 

 The syndromes that have not been taken into account are 
Smith-Lemli-Opitz syndrome (SLOS) and to a certain degree 
Zellweger syndrome and congenital cytomegalovirus infec-
tion. Smith-Lemli-Opitz syndrome (SLOS) seems to be dif-
ficult to diagnose for several of the methods with the data 
used here. 

3.3.3. ‘Naive Bayes’ Calculations 

 The results for the ‘naive Bayes’ ‘calculations are listed 
in Table 8. Although the difference is not large, the naive 
Bayes’ calculations attain the lowest global error rate of di-
agnosis. Like in the vector method runs, the naive Bayes’ 
calculation uses all available information, and does not have 
to compromise to satisfy a demand for human readability. 

3.4. Comparing the Methods 

3.4.1. The Vector Method Versus the Set Method Versus 

ID3 

 These three methods did roughly equally well as judged 
by the overall error rate. None of the methods did very badly 
in any of the syndrome groups. (It would have been possible 
to have a good overall performance, even with a poor per-
formance in the smaller syndrome groups). 

 Small variations in specificity could lead to relatively 
large variations in predictive value. 

Table 8. ‘Naïve Bayes’ Calculation 

 

Syndrome  

Name 

No of  

Cases 
Sensitivity Specificity 

Predictive  

Value 

FAS 3597 99.9 99.5 99.9 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 99.4 99.7 95.7 

Noonan 299 100.0 100.0 100.0 

Congenital CMV 221 95.5 99.9 97.7 

Trisomy 18 208 100.0 99.9 98.1 

Turner 123 95.9 100.0 99.2 

Trisomy 13 93 95.7 100.0 100.0 

deLange 81 100.0 100.0 100.0 

Williams 66 97.0 100.0 100.0 

Beckwith 56 100.0 100.0 100.0 

Prader-Willi 55 100.0 100.0 98.2 

Meckel 38 97.4 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 100.0 100.0 100.0 

Klippel-Feil 23 95.7 100.0 100.0 

SLOS 23 100.0 100.0 95.8 

FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Average of ten 

runs of 6000 artificial patients in each run. On average correctly diagnosed 5971, 

global error rate 0.48%. 

 

3.4.2. The Set Method Versus Cluster Analysis 

 These two methods are comparable in that they both ren-
dered lists or clusters of clinical signs. We chose cluster analy-
sis as a reference method since it is a mainstream mathematical 
method. The cluster analysis with clinical signs as the basic 
unit is most appropriate for comparison with the set method. 
This analysis did not name syndromes, it just grouped clinical 
signs. Given this restriction, the clinical signs grouped by the 
cluster analysis, and the sets of signs found by the set method 
match reasonably well. For example, Table 6 shows, from the 
top, that FAS (fetal alcohol syndrome) according to the set 
method has the signs short palpebral fissures, and midface hy-
poplasia. Table 7, the cluster anaysis, shows in line 5, 4 and 3 
from the bottom, that short palpebral fissures, long philtrum, 
and midface hypoplasia are grouped closely together. Next, for 
trisomy 21 (Down syndrome) in Table 6 the set method found 
the signs flat occiput, upward slanting palpebral fissures, and 
flat face. In Table 7 (the cluster analysis) in the middle of the 
figure finds a narrow grouping of flat face, upward slanting 
palpebral fissures, and flat occiput. 

4. DISCUSSION 

 The principal aim of this study was to demonstrate that 
our vector method and other basic artificial intelligence 
methods represent objective methods that are essential in 
establishing diagnostic criteria in syndromology. 

4.1. The Artificial Intelligence Methods 

 The vector method attained high rates of correct diagno-
ses. The set method did find a set of clinical signs for each 
syndrome diagnosis. These findings were corroborated by 
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the results of the cluster analysis. The clinical signs teased 
out by the set method are also reasonable from a clinical 
point of view. 

 In contrast to many other studies, our study had a data set 
with correct proportions between the different syndrome 
diagnoses. 

 Thus, the study has dealt with the problem of prior prob-
abilities. 

 If the artificial intelligence methods can successfully be 
applied to data from artificially generated patients, it seems 
valid to infer that they could be used on data from real pa-
tients. 

 The algorithms found clinically useful signs, signs that 
may be used both by clinicians, and for machine diagnosis. 

 The vector method and set method’s main advantages 
are 

• Robustness 

 These methods are robust in that: 

- They do not require normal distributions of variable 
values. 

- They do not require statistical independence of signs. 

-  They can handle binary variables. 

- They can handle missing values. 

• Simplicity 

- The methods are basic and easy to understand. 

• Power 

- The methods are powerful in that they can handle 
larger amounts of data than most of its competitor 
methods. They are also very fast. 

• Scalability  

- Some methods which are useful with a small number 
of cases/ patients do not scale up to large numbers. 
The vector method should be able to manage tens of 
thousands of features and hundreds of thousands of 
patients. In practice this means the limiting factor will 
be how many patients the researcher is able to collect. 

 The term predictive value used for the vector method 
algorithm is to a certain degree a misnomer, since there was 
no clinical sign or set of clinical signs that could be evalu-
ated for predictive value. The ‘predictive value’ here is cal-
culated post hoc. The term has been kept for consistency. 

 The time used by the vector method algorithm increases 
linearly with the number of cases (O(n)), while the time in-
creases as the square of the number of cases for the set 
method (O(n*n)). 

4.2. Cluster Analysis 

 In this study, we used cluster analysis as a control, to see 
if the findings by the set method could be substantiated. The 
cluster analysis lends support to the set method findings. 

 

 

4.3. Details of Our Study -- Discussion of Validity of Re-
sults 

4.3.1. General Considerations 

Using Randomly Generated Patients 

 Doctors as well as informaticians often prefer using ‘real 
patients’ to e.g. machine generated patients. Syndromes are 
rare, so it would in practice be a prohibitive task to find a 
representative number of patients for each syndrome group. 
Furthermore, biases may be introduced when using selected 
groups of ‘real patients’, e.g. by the inclusion of only the 
‘classical cases’ in the patient series. Thus, it may actually be 
the better option to use machine-generated patients. 

 In a situation with no criterion standard, it would be po-
tentially misleading to directly compare the performance of 
the artificial intelligence methods with clinicians’ perform-
ance. If either approach - AI or clinical - were chosen as the 
reference standard, that approach by definition would outper-
form the other. 

 There are overwhelming practical and methodological 
problems with doing a prospective study encompassing all 
syndromes to establish the frequency of clinical signs in each 
individual syndrome and in the patient group at large. 

 Our primary goal was to demonstrate that the artificial 
intelligence methods could be used to pick out the most pre-
dictive clinical signs in syndrome diagnosis. We were not 
concerned with diagnosis of individual syndrome patients. 
We therefore chose the scheme described using figures from 
the Birth Defects Encyclopedia, and randomly generated 
artificial patients. 

 Our randomization procedure generated a small number 
of ‘patients’ with very few clinical signs just by chance. 
Since it was set up to generate a clinical sign in an individual 
patient with a probability of 0.9 if 90% of patients were 
listed in BDE to have the sign, 1 in 10 would not have the 
clinical sign in question. The probability that a given artifi-
cially generated patient would lack both of two such signs, 
would be 0.1*0.1, or one in a hundred. When a large number 
of patients were generated, the occasional patient would have 
very few signs altogether. 

 This will obviously make the diagnostic task more diffi-
cult, for an artificial intelligence method, as well as for any 
other method. 

 Any co-existence of clinical signs would be lost by the 
randomization procedure. This may be a source of error 
when the methods are applied to artificially generated pa-
tients, but the first order predictive value of signs is probably 
greater than the second order or combined effect of two indi-
vidual clinical signs. 

4.3.2. The Set Method 

Pruning and Prototyping 

 The original lists of clinical signs found by the set 
method are obviously the best to use to arrive at a diagnosis. 
The set method, though, may also be counter-intuitive,  
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stating that the patient should have all the signs listed. Prun-
ing and prototyping will simplify matters for a clinician as 
the less important signs are removed, and the remaining list 
is more manageable. We have arbitrarily pruned by remov-
ing lists of clinical signs that contain more than 3-4 signs. 

 When it comes to machine diagnosis, however, pruning 
is unnecessary and will only lower the diagnostic perform-
ance. 

4.4. General Considerations in Syndrome Diagnosis with 
Respect to our Study 

4.4.1. Accept old Diagnoses or form New Ones? 

 Most studies on syndrome diagnosis accept established 
diagnoses. Diagnoses in single patients may be questioned, 
but the diagnostic groups themselves are often considered 
untouchable. 

 Using methods such as the vector method or cluster 
analysis, it is an option to challenge the existing diagnostic 
groups. Set up in this way, it is conceivable that the nearest 
neighbour algorithm could suggest lumping or splitting of 
diagnostic groups, that new groups with different boundaries 
should be formed, or that totally new groups should be estab-
lished. 

 ‘New’ syndromes As far as establishing new diagnoses 
is concerned, an objective method has advantages compared 
to the pattern recognition method. 

 The pattern recognition method would be dependent on a 
single clinician seeing enough cases of a new syndrome to 
realize it was actually a new syndrome. 

 The syndromologist would then have to report it, other 
syndromologists would have to read the report and recognize 
the syndrome themselves. This obviously works in many 
cases, since new syndromes are regularly reported. 

 It is a disturbing fact, though, that we cannot know how 
many syndromes are not reported. It is reasonable to think 
that an international central database of syndromes would be 
useful for awareness to detect new syndromes. One impor-
tant group would be teratogenic syndromes, e.g. possibly 
caused by the mother living close to a nuclear plant, caused 
by estrogen-like pollutants in the environment, caused by 
maternal drug abuse etc. 

4.4.2. Using One Sign Versus Using a Set of Signs 

 The solution provided by the set method is a set of clini-
cal signs that have to be present simultaneously. 

 This is different from the single-sign method, where one 
sign, when found, increases the probability of the syndrome, 
the next sign may increase or decrease the probability etc. 

 In general, the requirement for several signs to be present 
at the same time, increases specificity and decreases sensitiv-
ity. 

 This is reflected in the tables of the Results section, 
where several lists of signs have a very high specificity, of-
ten one hundred per cent. Once found, these clinical signs 
(the set of clinical signs) will be better predictor variables. 

 A very long list of signs that have to be present simulta-
neously, may not be of value to a human diagnostician. Such 

a list would make perfect sense in machine diagnosis, 
though. 

4.4.3. Using the Sign to Find a Diagnosis Versus Using the 

Sign to Partition the Universe of Possible Diagnoses 

 The most common approach with syndrome diagnosis 
based on clinical signs, is to use single signs to get closer to 
a diagnosis. With other methods, like the ID3 method, one 
partitions the ‘universe’ of possible diagnoses and thus con-
tinually circles in the few diagnoses that remain. In artificial 
intelligence, this way of searching is common, whereas in 
clinical thinking it may not seem that natural (although many 
diagnosticians use this way of thinking, perhaps uncon-
sciously). 

4.4.4. The ‘Closed World Assumption’ 

 In artificial intelligence, it is common to make explicit 
the concept of the ‘closed world’. Many studies make this 
assumption, but do not state it explicitly. In the closed world 
of our study, there were only seventeen syndromes. Thus, if 
sixteen of the syndromes could be ruled out, the diagnosis 
would have to be the seventeenth syndrome. This may be 
unrealistic in a real-world situation. 

4.4.5. Inclusion of Negative Signs 

 Syndromologists often speak of ‘handles’, i.e. clinical 
signs with a high positive predictive value. We kept to this 
standard approach of using positive signs, i.e. signs present. 

 Of course, signs not present may help single out diagno-
sis just as effectively. Conversely, a sign may have a high 
negative predictive value, i.e. if this sign is present, the diag-
nosis becomes much less likely. 

4.4.6. Clinical Phenotype or DNA Based Diagnosis? 

 DNA diagnosis and diagnosis based on the clinical phe-
notype could either give the same result, or different results. 
In some cases the problem is small, since there is no alterna-
tive to clinical classification and diagnosis. 

 In other cases, one might ask which would be the ‘cor-
rect’ classification. 

 The clinical classification may be more practical. The 
DNA diagnosis is easier, more clear cut, and may have a 
higher status [21]. 

 However, clinical classification is not outdated, and 
never will be. What is of interest, is ultimately the pheno-
type, the human being. If the overlap between a phenotypic 
classification and a DNA classification is little, so is the in-
terest in the DNA ‘defect’. 

5. CONCLUSION 

 For most syndromes there is no criterion standard of di-
agnosis. 

 In many cases, one will therefore have to forgo an accu-
rate diagnosis. It is therefore of paramount importance to 
have a consistent set of diagnostic criteria. Thus, there is a 
need for objective methods of diagnosis. Traditionally, these 
have been various statistical methods. However, statistical 
methods have certain weaknesses, e.g. they require basic 
assumptions that often cannot be met. 
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 The vector method and the set method used here, are ob-
jective methods that are robust, simple and powerful. This 
study has shown they can successfully be applied to a data-
base of clinical signs and syndrome diagnoses. In this study, 
we used these basic methods to elicit objective clinical signs 
with high predictive value; signs that can be used by clini-
cians. 

 These methods may also be used in computer assisted 
diagnostic systems. 

 In conclusion, the two basic methods used here, can em-
body the objective methods that are mandatory in syndrome 
diagnosis, and necessary in all forms of medical diagnosis. 

SUPPLEMENTARY MATERIAL 

 This article is accompanied by an overview slide presenta-
tion and it can be viewed at www.bentham.org/open/tominfoj 
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