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Abstract: The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell 

depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. 

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sym-

pathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to 

observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) 

analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system 

for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven fea-

tures from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. 

Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We 

demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data 

sets. 
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1. INTRODUCTION 

 Electrocardiogram (ECG) is the P-QRS-T wave indicat-
ing the electrical activity of the heart. It originates at the si-
noatrial (SA) node and the ECG signals are extracted by 
placing sensors at the limb extremities of the subject. The 
shape of the ECG signal indicates the cardiac health of the 
subject [1]. It is very difficult to decipher the subtle changes 
in these signals by our eye alone. These bio-signals are non-
stationary and non-linear in nature. 

 Heart rate variability reflects the autonomic control of the 
cardiovascular system [2-3]. It is a simple, noninvasive tech-
nique which provides an indicator of the dynamic interaction 
and balance between the sympathetic nervous system and the 
parasympathetic nervous system. These signals are not linear 
in nature and hence, analysis using nonlinear methods can 
unveil the hidden information in the signal. 

 The HRV can be analyzed using (i) time domain analy-
sis, (ii) frequency domain and (iii) non-linear methods. Time 
domain methods of HRV are simplest to use as they are 
based on common statistical measures. Time domain meth-
ods are the statistical methods and based on mean and stan-
dard deviation of the RR intervals [4]. 

 A typical power spectrum of the heart rate signal has three 
main frequency regions [2]. The high frequency power (HF: 
0.15-0.5 Hz) band reflects respiratory sinus arrhythmia (RSA) 
and cardiac vagal activity. Low frequency (LF: 0.04-0.15 Hz) 
power is related to baroreceptor control and is mediated by  
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vagal and sympathetic systems. Very-low-frequency (VLF: 
0.0033-0.04 Hz) power is related to the thermoregulatory, 
vascular mechanisms, and renin-angio tension systems. 

 Cardiac arrhythmia detection algorithms have been pro-
posed using non-linear techniques [5-8]. Dingfie et al. have 
classified cardiac arrhythmia into six classes using autore-
gressive modeling [9]. 

 The power spectrum provides the signal’s power (energy 
per unit time) falling within its frequency components [10-
12]. But, it does not give any information about the phase 
relations between the frequency components. HOS can be 
used to analyze the nonlinear signals (VHF amplitudes), 
which may involve cross phase relations [13]. 

 The Bispectrum is the Fourier Transform of the third 

order correlation of the signal which indicates cross correla-

tion between frequency components in a two-dimensional 

(2-D) frequency plot [14-15]. It gives information about the 

phase coupling between the frequency components at f1, f2 , 

and f1 + f2 . The bicoherence is the normalized bispectrum. 

  Higher order spectra (HOS) are spectral representations 
of moments and cumulants and can be defined for determi-
nistic signals and random processes. They have been used to 
detect deviations from Gaussianity and identify non-linear 
systems [14]. HOS based features can be formulated to be 
rotation, translation and scaling invariant when applied to 
one and two dimensional pattern recognition [16]. Research 
in the application of HOS includes detection of photomon-
tage [17], mine detection [18], study of machine faults [19], 
recognition of viruses from electron microscopic images 
[20], analysis of biosignals like ECG [21] and EEG [22] etc. 
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 The bicoherence approach was used to analyze the unex-
pected sudden very high frequency (VHF) peaks in the heart  
transplant subjects in [13]. They have indicated two types of 
peaks in this type of patients. The first type of VHF peaks 
reflects the cardiac-respiratory coupling, imposed by non-
sinusoidal breathing. The second type was not induced by 
the respiratory system. 

 HOS have been widely used in the analysis of the EEG 
signals and recently, it has been applied to the HRV signal. 
The coupling between cardiac and respiratory activity was 
also studied using the bivariate data and cross-bispectrum 
computation between the ECG and respiratory signals [23]. 
They have absorbed the nonlinear coupling during both 
spontaneous and paced respiration. A technique for time-
variant analysis of quadratic phase coupling (QPC) of the 
heart rate data was studied [24]. They have observed a phase 
co-ordination between the 10-second-rhythm and respiratory 
sinus arrhythmia (RSA) as well as a non-linear coupling 
(amplitude modulation) between these HRV components in 
neonatal heart rate signals. 

 Recently Chua et al., have analyzed the cardiac arrhyth-
mia using heart rate signals using bispectrum invariant fea-
tures and phase entropies [25]. They have proposed different 
bispectrum and bicoherence plots. In this paper, we derived 
features from the HOS and used them for classification. We 
were able to classify normal HRV signals and four other 
classes of arrhythmia with an average accuracy of above 
85%. 

 The layout of the paper is as follows: Section (2) presents 
the data acquisition process and preprocessing of the raw 
cardiac signals. Section (3) deals with the HOS analysis 
namely the bispectrum, and the features of HOS, statistical 
analysis and SVM classifier used, Section (4) presents the 
results of the study. The discussion on our data analysis is 
presented in section (5). Finally the paper concludes in sec-
tion (6). 

2. DATA ACQUISITION PROCESS 

 The data used for analysis in this work was obtained by 
recording ECG signals (of 10 to 15 minutes duration) of over 
330 patients in reclining condition. The permission from the 
clinicians and staff of the Kasturba Medical College Hospi-
tal, Manipal, India has been obtained to collect the data for 
this study. The original analog signal recorded in magnetic 
tapes (Holter recording) was subsequently converted to digi-
tal equivalent by discrete time sampling and quantization. A 
sampling rate of 320 samples/sec was chosen due to the fact 
that almost all the useful frequency components in the ECG 
signal were below 100 Hz. The numbers of dataset in each 
class is shown below in Table 1. 

Table 1. Numbers of ECG Data Sets for Different Cardiac 

Health States 

 

Class NSR PVC CHB SSS CHF  

Number of datasets 183 37 42 43 25 

 

 For the purpose of this study, the cardiac data that in-
clude both the normal and other cardiac abnormalities are 
classified into five categories or classes, namely, 

(i) Normal sinus Rhythm (NSR) 

(ii) Pre-ventricular Contraction (PVC) 

(iii) Complete Heart Block (CHB) 

(iv) Sick Sinus Syndrome (SSS) 

(v) Congestive Heart Failure (CHF) 

 A brief description of the different cardiac classes is 
given below. 

 (i) Normal Sinus Rhythm (NSR): A ‘P wave’ exists for 
every QRS complex. Each P wave is the same distance from 
the QRS complex – less than 20 seconds. All QRS com-
plexes are the same size and shape and point in the same 
direction. Each QRS is the same distance from the T waves 
and the QRS the duration is 10 seconds or less. Heart rate 
will be varying in the range of 60-100 beats/minute and is 
rhythmic [1]. 

 (ii) Preventricular Contraction (PVC): These problems 
are formed outside the sino-atrial (SA) node. The QRS com-
plex is widened and not associated with the preceding P 
wave. The T wave is inverted after PVC. It is often followed 
by a compensatory pause. In couplets, two consecutive PVCs 
exists [1]. 

 (iii) Complete Heart Block (CHB) (Third Degree 

Heart Block): This is a disease of the electrical system of 
the heart, in which the impulse generated in the SA node in 
the right atrium does not propagate to the ventricles. The 
ventricles contract and pump the blood at a slower rate. This 
results in the reduction of the heart rate (as low as 30 beats 
per minute). 

 (iv) Sick Sinus Syndrome III (Bradycardia – Tachy-

cardia Syndrome): is a group of diseases (symptoms) that 
indicate that the SA node is not functioning properly. It af-
fects 3 out of every 10,000 subjects and becomes more 
common with age. The heart rate varies rhythmically in 
bradycardia (i.e. very slow) and tachycardia (i.e. very fast) 
patterns. 

 (v) Congestive Heart Failure (CHF): is a condition in 
which the weakened heart muscle is unable to pump enough 
oxygen-rich blood for the body. When the heart can not pump 
enough blood, fluid accumulates in the lungs and other organs. 
It is most common in elderly subjects above 70 years. 

2.1. Preprocessing 

 The preprocessing of the ECG signals runs through the 
following steps. 

• The data is passed through a low pass filter with a 
cut-off frequency of 35Hz to remove unwanted high 
frequencies present in the ECG signal. 

• A high pass filter with cut-off frequency 0.3Hz is 
applied to suppress the baseline wander that is present 
in the signal. 

• A band-stop filter of cut-off frequencies 50 or 60Hz is 
used to suppress the power-line interference noise. 

• Finally a median filter is used to extract baseline 
wander of the processed ECG signal, and then it is 
subtracted from the processed ECG signal to effec-
tively remove all the baseline wander. 
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 In order to detect the R peaks of the ECG, Tompkins 
algorithm [26-27] is employed on the ECG data. 

 The interval between two successive QRS complexes is 
defined as the RR interval (tr-r seconds) and the heart rate 
(beats per minute) is given as: 

HR = 60/tr-r                 (1) 

3. METHODS USED 

 The HRV signal is analyzed using different higher order 
spectra (also known as polyspectra) that are spectral repre-
sentations of higher order moments or cumulants of a signal. 
In particular, this paper studies features related to the third 
order statistics of the signal, namely the bispectrum. The 
Bispectrum is the Fourier Transform of the third order corre-
lation of the signal and is given by 

B(f1,f2) = E[X(f1)X(f2)X*(f1+f2)]          (2) 

where X(f) is the Fourier transform of the signal x(nT) and 
E[.] stands for the expectation operation. In practice, the ex-
pectation operation is replaced by an estimate that is an aver-
age over an ensemble of realizations of a random signal. For 
deterministic signals, the relationship holds without an ex-
pectation operation with the third order correlation being a 
time-average. For deterministic sampled signals, X(f) is the 
discrete-time Fourier transform and in practice is computed 
as the discrete Fourier transform (DFT) at frequency samples 
using the FFT algorithm. The frequency f may be normalized 
by the Nyquist frequency to be between 0 and 1. 

3.1. Higher Order Spectral Features 

 In our earlier study, we proposed the general patterns for 
different classes of arrhythmia. Bispectral entropies [25] 
were derived to characterize the regularity or irregularity of 
the HRV from bispectrum plots. The formulae for these bis-
pectral entropies are as follows: 

 Normalized Bispectral Entropy (BE 1):  

P1 = pn log pnn
           (3) 

where pn =
B( f1, f2 )

B( f1, f2 )
,  = the region as in Fig. (1). 
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  The normalization in the equations above ensures that 
entropy is calculated for a parameter that lies between 0 and 
1 (as required of a probability) and hence the entropies (P1 
and P2) computed are also between 0 and 1. 

 In this study we also make use of features related to mo-
ments [28] and the weighted centre of bispectrum (WCOB) 
[29] to characterize these plots. The features related the mo-
ments of the plot are: 

 The sum of logarithmic amplitudes of the bispectrum: 

  
H

1
= log B f

1
, f

2( )( )  

  

Fig. (1). Non-redundant region of computation of the bispectrum 

for real signals. Features are calculated from this region. Frequen-

cies are shown normalized by the Nyquist frequency. 

 The sum of logarithmic amplitudes of diagonal elements 
in the bispectrum: 
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 The first-order spectral moment of amplitudes of diago-
nal elements in the bispectrum: 
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 These features (H1-H3) were used by Zhou et al. [28] to 
classify mental tasks from EEG signals. 

 The definition of WCOB [29] is given by: 

  

f
1m

=

iB(i, j)

B(i, j)
f
2m

=

jB(i, j)

B(i, j)
 

where i, j are the frequency bin index in the non-redundant 
region. 

 Blocks of 1024 samples, corresponding to 256 seconds at 
the re-sampled rate of 4 samples/sec were used for comput-
ing the bispectrum. These blocks were taken from each HRV 
data record with an overlap of 512 point (i.e. 50%). 

3.2. Quantitative Analysis 

 ANOVA uses variances to decide whether the means are 
different. This test uses the variation (variance) within the 
groups and translates into variation (i.e. differences) between 
the groups, taking into account how many subjects there are 
in the groups. If the observed differences are high then it is 
considered to be statistically significant. 

 In this work, all the features described above were ob-
tained and tested with ANOVA. The results of these were 
subjected to ‘t’ test with more than 95% confidence interval 
giving excellent ‘p’ values, far lower than 0.05, in all cases 
(Table 2). 

3.3. Support Vector Machine (SVM) Classifier 

 In this study a kernel-based classifier is adopted for clas-
sification of the cardiac abnormalities. Herein, the attribute 
vector is mapped to some new space. Despite the fact that 
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classification is accomplished in a higher dimension space, 
any dot product between vectors involved in the optimization 
process can be implicitly computed in the low dimensional 
space [30]. 

 For a training set of instance-label pairs 
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x
i

R
n and 

  
y

i
= { 1, 1}  and if 
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subject to the constraints 

yi w
T xi( ) + b( ) 1 i , i 0           (6) 

where C>0 is the penalty parameter for the error term and 

 i
 are a set of slack variables that are introduced when the 

training data is not completely separable by a hyper plane. 

The SVM finds a linear separating hyper plane with the 

maximal margin in this higher dimensional space. As in the 

linear case, the mapping appears in terms of the kernel func-

tion 
  

K x
i
, x

j( ) = (x
i
)T (x

j
).  Despite the fact there are 

several kernels, typical choice for kernels are radial basis 

functions. The RBF kernel non-linearly maps samples into a 

higher dimensional space. There are several methods that can 

be used to extend a binary class SVM to multi-class SVM. In 

this work, we used the One against all method SVM to clas-

sify the five classes of HRV data [31]. We perform an initial 

grid search to obtain a suitable regularization constant and it 

was set to 190 for our experiment [32]. 

3.4. Test Vector Generation 

 In order to measure and validate the performance of a 
classifier, there should be a sufficiently large set of the test 
data. When only a small database is available, different com-
binations of training and test sets can be used to generate 
more trials. In our experiment, we choose approximately two 
third of the data from each class of HRV signals for training 
and one third for testing. This experiment was repeated five  
 

times by choosing different combinations of training data 
and test data. Combinations of training and test data were 
randomly chosen. In each of these experiments, a new SVM 
model was generated and the test data sets did not overlap 
with the training data sets. 

4. RESULTS 

 Table 2 shows the range of values for all the seven fea-
tures for the five classes. The distribution of various features 
for the fives classes of arrhythmia are shown in Fig. (2a-g). 
The result of ANOVA with features obtained from HOS for 
various kinds of cardiac diseases is listed in Table 2. 

 For Normal cases, heart rate varied continuously between 
60bpm-80 bpm. The bispectrum entropies (P1 and P2) appear 
to be high due to higher variation in the heart rate. The mean 
value of P1 is 0.719 while that of P2 is 0.43. The mean values 
of moments H1, H2, H3 are 2.81e5, 1.29e3 and 1.42e5 respec-
tively. The WCOB mean values for f1m, f2m are 60 and 22.32 
respectively. It may be that these values are related to the 
rate of breathing and its harmonics. And there may be a 
modulating effect on the heart rate variability due to the 
breathing pattern.  

Table 3. Confusion Matrix for Five Different Classes of  

Arrhythmia with a SVM Classifier 

 

Type NSR PVC CHB SSS CHF 

NSR 255 17 13 0 5 

PVC 12 37 0 1 0 

CHB 5 0 48 0 7 

SSS 0 1 0 64 0 

CHF 4 0 0 0 31 

 

Table 4. Classification Accuracy for Five Different Classes of 

Arrhythmia with a SVM Classifier 

 

Class NSR PVC CHB SSS CHF Average 

Accuracy (%) 87.93 74.00 80.00 98.46 88.57 85.79 

 

 

Table 2. Results of ANOVA on Various Bispectral Features. Entries in the Columns Other than the Last Correspond to Mean and 

Standard Deviation 

 

Features Normal PVC CHB SSS CHF P-Value 

P1 0.719 ± 0.086 0.824 ± 0.063 0.710 ± 0.022 0.780 ± 0.091 0.605 ± 0.129 <0.0001 

P2 0.430 ± 0.146 0.542 ± 0.181 0.428 ± 0.150 0.420 ± 0.255 0.187 ± 0.140 <0.0001 

H1 2.81e5 ± 5.82e4 3.64e5 ± 4.55e4 1.79e5 ± 4.23e4 4.64e5 ± 3.40e4 2.02e5 ± 5.43e4 <0.0001 

H2 1.29e3 ± 2.31e2 1.60e3 ± 1.74e2 8.94e2 ± 1.66e2 1.98e3 ± 1.22e2 9.74e2 ± 2.18e2 <0.0001 

H3 1.42e5 ± 3.04e4 1.90e5 ± 2.39e4 8.94e4 ± 2.15e4 2.38e5 ± 1.87e4 1.02e5 ± 2.89e4 <0.0001 

f1m 60.00 ± 61.90 126.70 ± 43.10 41.95 ± 10.90 62.85 ± 36.80 33.71 ± 25.5 <0.0001 

f2m 22.32 ± 31.40 56.35 ± 36.80 12.91 ± 4.28 31.05 ± 23.2 10.50 ± 9.89 <0.0001 
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 In the Pre-Ventricular Contraction, there will be ectopic 
beats in the normal ECG signals. The mean entropies (P1 and 
P2) indicated in the Table 2 are correspondingly higher than 
the normal case due to higher variation. The mean values of 
moments H1, H2, H3 are 2.81e5, 1.29e3 and 1.42e5 respec-

tively. The WCOB mean values for f1m, f2m are 126.7 and 
56.35 respectively. 

 In Complete Heart Block (CHB) the Atrio-ventricular 
node is unable to send electrical signals rhythmically to the 

                  (a) P1               (b) P2 

P1 

NSR PVC CHB SSS CHF 

 

P2 

NSR PVC CHB SSS CHF 

 

 

                     (c) H1        (d) H2 

NSR PVC CHB SSS CHF 

H1 

 

H2 

NSR PVC CHB SSS CHF 

 

 

Fig. (2a-d). Distributions of various features extracted from the bispectrum (a) bispectrum entropy 1 (P1), (b) bispectrum entropy 2 (P2), (c) 

sum of the logarithmic amplitudes of the bispectrum (H1), (d) sum of logarithmic amplitudes of diagonal elements (H2). 
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ventricles and as a result the heart rate remains low. The bis-
pectrum entropies (P1 and P2) indicated in the Table 2 are 
lower as compared to the normal subject due to the reduced 
beat to beat variation. The mean values of moments H1, H2, 

H3 are 1.79e5, 8.94e2 and 8.94e4 respectively. The WCOB 
mean values for f1m, f2m are 41.95 and 12.91 respectively. 

 In SSS - III there is a continuous variation of heart rate 
between Bradycardia and Tachycardia. The bispectrum en-

                  (e) H3                  (f) f1m 

NSR PVC CHB SSS CHF 

H3 

 

NSR PVC CHB SSS CHF 

f1m 

 

 

                      (g) f2m 

NSR PVC CHB SSS CHF 

f2m 

 

Fig, (2e-g). Distributions of various features extracted from the bispectrum (e) first-order spectral moment of amplitudes of diagonal ele-

ments in the bispectrum (H3), (f) the weighted centre of bispectrum frequency index 1 (f1m), (g) the weighted centre of bispectrum frequency 

index 2 (f2m). 
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tropies (P1 and P2) indicated in the Table 2 are comparable 
with the normal case due to the higher variation in the beat 
to beat. The mean values of moments H1, H2, H3 are 4.64e5, 
1.93e3, 2.38e5 and 8.94e4 respectively. The WCOB mean 
values for f1m, f2m are 62.85 and 31.05 respectively. 
 

 

Table 5. Sensitivity, Specificity, Positive Predictive Value for 

the SVM classifier. Entries to the Left are the Num-

bers of True and False Negatives and the True and 

False Positives 

 

TN FN TP FP Specificity Sensitivity +PV 

255 21 189 35 87.93% 90.00% 84.38% 

 

 In the case of Congestive Heart Failure (CHF) the heart 
is unable to pump the blood (supply enough oxygen) to the 
different parts of the body. The mean bispectrum entropies 
(P1 and P2) are lower than the normal case due to the reduced 
beat to beat variation. The mean values of moments H1, H2, 

H3 are 2.02e5, 9.74e2, 1.02e5 and 8.94e4 respectively. The 
WCOB mean values for f1m, f2m are 33.71 and 10.50 respec-
tively. 

 Fig. (2a-d) indicates the distribution of P1, P2, H1 and H2 
features. And the distribution of H3, f1m and f2m are shown in 
Fig. (2e-g). Table 3 shows the confusion matrix obtained by 
the SVM classifier. The result of classification efficiency is 
shown in Table 4. Our results show that, our proposed 
method can classify the unknown cardiac class with an effi-
ciency of about 85%, sensitivity and specificity of 90% and 
87.93% respectively (Table 5). 

5. DISCUSSION 

 Different non-linear methods have been used to classify 
the cardiac classes using the heart rate signals [6, 33-34]. In 
all these studies, different non-linear parameters namely cor-
relation dimension, Lyapunov exponent, approximate en-
tropy, fractal dimension, Hurst exponent and detrended fluc-
tuation analysis have been used to identify the unknown 
class of the disease. 

 In this work, we have applied higher order spectra as a 
non-linear tool to analyze cardiac signals. Table 5 shows the 
results of the application of HOS for cardiac signals. We 
have used the SVM and bispectral features to diagnose the 
different cardiac arrhythmia. 

 Bispectrum and bicoherence helps in the reduction of 
Gaussian noise reduction and detection of nonlinearities 
(phase coupling) in the signals [14, 35]. The real and spuri-
ous VHF (very high frequency) peaks were detected using 
bicoherence technique in about 50% of heart transplant(HT) 
subjects using the heart rate signals [13]. They have ob-
served two types of peaks in HT subjects. First peak reflects 
the nonlinear response to the cardiovascular system to the 
respiration. Second peak indicates the nonlinear response to 
the nonrespiratory spectral component of unknown origin. 

 Different ranges of bispectrum entropies and bispectrum 
invariants have been proposed for different cardiac arrhyth-
mia [25]. They have also proposed unique bispectrum and 
bicoherence plots for different cardiac diseases. 

 One of the major challenges in non-linear biosignal proc-
essing is the presence of intra-class variation. Another chal-
lenge is that there are overlaps among the derived features 
for various arrhythmias. Hence in our present work, we have 
used two bispectrum entropies and three features related to 
the moments and two weighted centre of bispectrum as de-
scriptors to differentiate different arrhythmia. These features 
were then fed to the SVM classifier for automated classifica-
tion. We achieve about 85% of classification accuracy with 
the current set of features. The accuracy may be further in-
creased by extracting better features and taking more diverse 
training data. 

 A comparison with other related work of arrhythmia 
classification based of heart rate signals and features based 
on non-linear methods is shown in Table 6. 

Table 6. Comparison of Arrhythmia Classification with Non-

Linear Features 

 

Authors Method No. of Class Accuracy (%) 

Acharya  
et al. (2003) 

Non-linear  
features-ANN-Fuzzy 

4 95 

Acharya  
et al. (2004) 

Non-linear --Fuzzy  8 85.36 

Kannathal  
et al. (2006) 

Anfis 10 94.09 

Chua  
et al. (2007)  

SVM 5 85.79 

Acharya  
et al. (2008) 

Modeling 9 83.38 

 

 Acharya et al. pioneered the work on HRV classification 
using non-linear parameters such as spectral entropy, Poin-
care plot geometry and Largest Lyapunov exponent. In this 
initial attempt, they were able to achieve an average accu-
racy of 95% for four classes [36] and 85.36% for 8 classes 
[37]. Recently, Kanalthal et al. have [33] improved this work 
using adaptive neuro-fuzzy fuzzy inference system (ANFIS) 
classifier and they were able to achieve the efficacy to an 
average value of 94.09%. Recently, Acharya et al., have 
classified the cardiac states using using fast Fourier trans-
form (FFT), auto regressive (AR), auto regressive moving 
average (ARMA) and moving average (MA) modeling tech-
niques into 9 classes [38]. They have used first three peak 
amplitudes and corresponding peak frequencies as the fea-
tures into the neural network classifier. And they were able 
to classify correctly up to 83.83% using ARMA modeling 
technique. 

 This is an initial work with HOS features and with fur-
ther enhancement and more training data, it is possible that 
the efficacy could be further improved. 

6. CONCLUSION 

 The Heart rate variability signal can be used as reliable 
indicator of some cardiac diseases. In this work, we have 
extracted different HOS features from heart rate signals for 
automated classification. We have evaluated the effective-
ness of different bispectrum entropies, moments and 
weighted centre of bispectrum as features for the classifica-
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tion of various cardiac abnormalities. Our proposed system 
that utilizes a combination of the different features with a 
Support Vector Machine classifier is able to identify the un-
known cardiac class with a sensitivity and specificity of 90% 
and 87.9% respectively. The accuracy of our proposed sys-
tem depends on several factors, such as the size and quality 
of the training set, the rigor of the training imparted, and also 
the extracted HOS parameters. 
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